542 lines
16 KiB
R
542 lines
16 KiB
R
![]() |
#These first few lines run only when the file is run in RStudio, !!NOT when an Rmd/Rnw file calls it!!
|
|||
|
rm(list=ls(all=TRUE)) #Clear the variables from previous runs.
|
|||
|
cat("\f") # clear console
|
|||
|
|
|||
|
# ---- load-packages --------------------------------------------------
|
|||
|
# Attach these packages so their functions don't need to be qualified: http://r-pkgs.had.co.nz/namespace.html#search-path
|
|||
|
library(magrittr) # enables piping : %>%
|
|||
|
library(dplyr) # data wrangling
|
|||
|
library(ggplot2) # graphs
|
|||
|
library(tidyr) # data tidying
|
|||
|
library(maps)
|
|||
|
library(mapdata)
|
|||
|
library(sf)
|
|||
|
library(readr)
|
|||
|
|
|||
|
|
|||
|
# ---- load-sources ---------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- declare-globals ----------------------------------------------------
|
|||
|
|
|||
|
#set ggplot theme
|
|||
|
ggplot2::theme_set(theme_bw())
|
|||
|
|
|||
|
# ---- load-data ------------------------------------------------------
|
|||
|
|
|||
|
# load the data, and have all column names in lowercase
|
|||
|
|
|||
|
nc_diabetes_data_raw <- read_csv("https://raw.githubusercontent.com/mmmmtoasty19/nc-diabetes-epidemic-2020/62bdaa6971fbdff09214de7c013d40122abbe40d/data-public/derived/nc-diabetes-data.csv") %>%
|
|||
|
rename_all(tolower)
|
|||
|
|
|||
|
us_diabetes_data_raw <- read_csv("https://github.com/mmmmtoasty19/nc-diabetes-epidemic-2020/raw/62bdaa6971fbdff09214de7c013d40122abbe40d/data-public/raw/us_diabetes_totals.csv"
|
|||
|
,skip = 2)
|
|||
|
|
|||
|
rural_counties <- read_csv("https://github.com/mmmmtoasty19/nc-diabetes-epidemic-2020/raw/b29bfd93b20b73a7000d349cb3b55fd0822afe76/data-public/metadata/rural-counties.csv")
|
|||
|
|
|||
|
county_centers_raw <- read_csv("https://github.com/mmmmtoasty19/nc-diabetes-epidemic-2020/raw/b29bfd93b20b73a7000d349cb3b55fd0822afe76/data-public/raw/nc_county_centers.csv", col_names = c("county", "lat","long"))
|
|||
|
|
|||
|
diabetes_atlas_data_raw <- read_csv("https://raw.githubusercontent.com/mmmmtoasty19/nc-diabetes-epidemic-2020/b29bfd93b20b73a7000d349cb3b55fd0822afe76/data-public/raw/DiabetesAtlasData.csv"
|
|||
|
,col_types = cols(LowerLimit = col_skip(),
|
|||
|
UpperLimit = col_skip(),
|
|||
|
Percentage = col_double()), skip = 2)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- load-map-data ----------------------------------------------------------
|
|||
|
|
|||
|
# load in both US State Map and NC County Map
|
|||
|
|
|||
|
nc_counties_map_raw <- st_as_sf(map("county",region = "north carolina", plot = FALSE,fill = TRUE)) %>%
|
|||
|
mutate_at("ID", ~stringr::str_remove(.,"north carolina,"))
|
|||
|
|
|||
|
state_map_raw <- st_as_sf(map("state",plot = FALSE,fill = TRUE ))
|
|||
|
|
|||
|
nc_cities <- st_as_sf(read_csv("https://github.com/mmmmtoasty19/nc-diabetes-epidemic-2020/raw/b29bfd93b20b73a7000d349cb3b55fd0822afe76/data-public/metadata/nc_cities.csv"),
|
|||
|
coords = c("long", "lat")
|
|||
|
,remove = FALSE
|
|||
|
,agr = "constant"
|
|||
|
,crs = 4326)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- tweak-data --------------------------------------------------------------
|
|||
|
|
|||
|
county_centers <- county_centers_raw %>%
|
|||
|
mutate_all(~stringr::str_replace_all(.,
|
|||
|
c("\\°" = ""
|
|||
|
,"\\+" = ""
|
|||
|
,"\\–" = "-"
|
|||
|
)
|
|||
|
)
|
|||
|
) %>%
|
|||
|
mutate(across(c("lat","long"), ~iconv(.,from = 'UTF-8', to = 'ASCII//TRANSLIT'))
|
|||
|
,across(c("lat","long"),~stringr::str_remove_all(.,"\\?"))) %>%
|
|||
|
mutate_at(c("lat","long"),as.numeric) %>%
|
|||
|
mutate(across("long", ~(. * -1))) %>%
|
|||
|
mutate_at("county", tolower)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
us_diabetes_data <- us_diabetes_data_raw %>%
|
|||
|
filter(Year >= 2000) %>%
|
|||
|
select( "Year","Total - Percentage") %>%
|
|||
|
rename(year = Year , us_pct = `Total - Percentage`)
|
|||
|
|
|||
|
diabetes_atlas_data <- diabetes_atlas_data_raw %>%
|
|||
|
mutate_at("State", tolower) %>%
|
|||
|
filter(Year >= 2000)
|
|||
|
|
|||
|
state_map_abb <- state_map_raw %>%
|
|||
|
left_join(read_csv("https://github.com/mmmmtoasty19/nc-diabetes-epidemic-2020/raw/b29bfd93b20b73a7000d349cb3b55fd0822afe76/data-public/metadata/state-abb.csv") %>%
|
|||
|
mutate_at("state", tolower)
|
|||
|
,by = c("ID" = "state") )
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- merge-data ---------------------------------------------------------
|
|||
|
|
|||
|
#join US totals to NC data
|
|||
|
|
|||
|
nc_diabetes_data <- nc_diabetes_data_raw %>%
|
|||
|
mutate_at("county", ~stringr::str_replace_all(.,"Mcdowell","McDowell")) %>%
|
|||
|
mutate(
|
|||
|
rural = county %in% rural_counties$rural_counties
|
|||
|
) %>%
|
|||
|
mutate_at("county",tolower) %>%
|
|||
|
left_join(us_diabetes_data)
|
|||
|
|
|||
|
|
|||
|
nc_counties_map <- nc_counties_map_raw %>%
|
|||
|
left_join(nc_diabetes_data, by = c("ID" = "county")) %>%
|
|||
|
left_join(county_centers, by = c("ID" = "county")) %>%
|
|||
|
rename(
|
|||
|
center_long = long
|
|||
|
,center_lat = lat)
|
|||
|
|
|||
|
state_map <- state_map_abb %>%
|
|||
|
left_join(diabetes_atlas_data, by = c("ID" = "State")) %>%
|
|||
|
rename_all(tolower)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- o-g1 ------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
us_diabetes_data <- us_diabetes_data %>%
|
|||
|
mutate(
|
|||
|
change = lead(us_pct) - us_pct
|
|||
|
,change = if_else(change > 0, TRUE, FALSE)
|
|||
|
) %>%
|
|||
|
mutate_at("change", ~stringr::str_replace_na(.,"NA"))
|
|||
|
|
|||
|
|
|||
|
|
|||
|
o_g1 <- us_diabetes_data %>%
|
|||
|
ggplot(aes(x = year, y = us_pct)) +
|
|||
|
geom_line(color= "#D95F02") +
|
|||
|
# geom_line(aes(color = change, group = 1)) +
|
|||
|
geom_point(shape = 21, size = 3,color= "#D95F02") +
|
|||
|
# geom_point(aes(color = change),shape = 21, size = 3) +
|
|||
|
scale_color_manual(values = c(
|
|||
|
"TRUE" = "#D95F02"
|
|||
|
,"FALSE" = "#7570B3"
|
|||
|
), guide = FALSE) +
|
|||
|
labs(
|
|||
|
title = "Percentage of Diagnosed Diabetes in Adults (18+), National Level"
|
|||
|
,x = NULL
|
|||
|
,y = NULL
|
|||
|
,caption = "Note: Data from the CDC's National Health Interview Survey (NHIS)"
|
|||
|
)
|
|||
|
|
|||
|
o_g1
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- s-g1 -----------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
s_g1 <- state_map %>%
|
|||
|
st_drop_geometry() %>%
|
|||
|
ggplot(aes(x = year, y = percentage, color = region)) +
|
|||
|
geom_line(aes(group = id ),alpha = 0.3,na.rm = TRUE) +
|
|||
|
geom_smooth(method = "lm", se = FALSE) +
|
|||
|
ggpmisc::stat_poly_eq(formula = y ~ + x ,
|
|||
|
aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
|
|||
|
parse = TRUE) +
|
|||
|
geom_vline(xintercept = 2011, linetype = "dashed", color = "gray") +
|
|||
|
scale_color_brewer(palette = "Dark2"
|
|||
|
,direction = -1
|
|||
|
,labels = snakecase::to_title_case
|
|||
|
) +
|
|||
|
labs(
|
|||
|
title = "Percentage of Diagnosed Diabetes in Adults (18+) \nby State and Region"
|
|||
|
,x = NULL
|
|||
|
,y = NULL
|
|||
|
,color = "Region"
|
|||
|
,caption = "Regions from US Census Bureau"
|
|||
|
)
|
|||
|
|
|||
|
s_g1
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- s-g2 ---------------------------------------------------------------
|
|||
|
|
|||
|
s_g2 <- state_map %>%
|
|||
|
st_drop_geometry() %>%
|
|||
|
filter(region == "south") %>%
|
|||
|
mutate_at("id", ~snakecase::to_title_case(.)) %>%
|
|||
|
ggplot(aes(x = year, y = percentage)) +
|
|||
|
geom_line(aes(group = id ),na.rm = TRUE, color= "#D95F02") +
|
|||
|
gghighlight::gghighlight(id == "North Carolina", label_params = list(vjust = 3)) +
|
|||
|
scale_y_continuous(breaks = seq(5,13,2)) +
|
|||
|
scale_x_continuous(minor_breaks = seq(2000,2016,1)) +
|
|||
|
labs(
|
|||
|
title = "Percentage of Diagnosed Diabetes in Adults (18+) \nSouth Region"
|
|||
|
,x = NULL
|
|||
|
,y = NULL
|
|||
|
,caption = "Regions from US Census Bureau"
|
|||
|
) +
|
|||
|
theme()
|
|||
|
|
|||
|
s_g2
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- nc-g1 ----------------------------------------------------------------------
|
|||
|
|
|||
|
d1 <- nc_diabetes_data %>%
|
|||
|
group_by(year) %>%
|
|||
|
summarise(
|
|||
|
pct = mean(percentage)
|
|||
|
,us_pct = mean(us_pct)
|
|||
|
) %>%
|
|||
|
pivot_longer(
|
|||
|
cols = c("pct", "us_pct")
|
|||
|
,names_to = "metric"
|
|||
|
,values_to = "values"
|
|||
|
) %>%
|
|||
|
mutate(
|
|||
|
metric = factor(metric
|
|||
|
,levels = c("pct","us_pct")
|
|||
|
,labels = c("NC", "National"))
|
|||
|
)
|
|||
|
|
|||
|
nc_g1 <- d1 %>%
|
|||
|
ggplot(aes(x = year, y = values, color = metric)) +
|
|||
|
geom_line() +
|
|||
|
geom_point(shape = 21, size = 3) +
|
|||
|
geom_vline(xintercept = 2011, linetype = "dashed", color = "gray") +
|
|||
|
scale_y_continuous(labels = function(x) paste0(x, "%")) +
|
|||
|
scale_color_brewer(palette = "Dark2") +
|
|||
|
labs(
|
|||
|
x = NULL
|
|||
|
,y = NULL
|
|||
|
,color = NULL
|
|||
|
,title = "Percent of Adults (20+) with Diagnosed Diabetes"
|
|||
|
)
|
|||
|
|
|||
|
nc_g1
|
|||
|
|
|||
|
# ---- nc-data-aberration ---------------------------------------------------
|
|||
|
|
|||
|
nc_g1a <- nc_diabetes_data %>%
|
|||
|
ggplot(aes(x = year, y = percentage)) +
|
|||
|
geom_line(aes(group = county),alpha = 0.4) +
|
|||
|
labs(
|
|||
|
x = NULL
|
|||
|
,y = NULL
|
|||
|
,color = NULL
|
|||
|
)
|
|||
|
|
|||
|
nc_g1a
|
|||
|
|
|||
|
|
|||
|
# ---- nc-g2 -----------------------------------------------------------------
|
|||
|
|
|||
|
d2 <- nc_diabetes_data %>%
|
|||
|
select(-us_pct) %>%
|
|||
|
mutate(
|
|||
|
pct_rural = if_else(rural == TRUE, percentage, FALSE)
|
|||
|
,pct_urban = if_else(rural == FALSE, percentage, FALSE)
|
|||
|
) %>%
|
|||
|
select(-countyfips,-percentage) %>%
|
|||
|
group_by(year) %>%
|
|||
|
summarise(
|
|||
|
pct_rural = mean(pct_rural,na.rm = TRUE)
|
|||
|
,pct_urban = mean(pct_urban,na.rm = TRUE)
|
|||
|
) %>% left_join(us_diabetes_data) %>%
|
|||
|
pivot_longer(
|
|||
|
cols = c("us_pct", "pct_rural","pct_urban")
|
|||
|
,names_to = "metric"
|
|||
|
,values_to = "value"
|
|||
|
,values_drop_na = TRUE
|
|||
|
) %>%
|
|||
|
mutate(
|
|||
|
metric = factor(metric,
|
|||
|
levels = c("pct_rural","pct_urban","us_pct")
|
|||
|
,labels = c("Rural","Urban","US")
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
nc_g2 <- d2 %>% ggplot(aes(x = year, y = value, color = metric)) +
|
|||
|
geom_line() +
|
|||
|
geom_point(shape = 21, size = 3) +
|
|||
|
geom_vline(xintercept = 2011, linetype = "dashed", color = "gray") +
|
|||
|
scale_y_continuous(labels = function(x) paste0(x, "%")) +
|
|||
|
scale_color_brewer(palette = "Dark2") +
|
|||
|
labs(
|
|||
|
x = NULL
|
|||
|
,y = NULL
|
|||
|
,color = NULL
|
|||
|
,title = "Percent of Adults (20+) with Diagnosed Diabetes \nDisplaying Rural vs Urban"
|
|||
|
)
|
|||
|
|
|||
|
nc_g2
|
|||
|
|
|||
|
# ---- spaghetti-plot ----------------------------------------------------
|
|||
|
|
|||
|
g50 <- nc_diabetes_data %>%
|
|||
|
filter(year < 2015) %>%
|
|||
|
mutate(
|
|||
|
rural = factor(rural
|
|||
|
,levels = c(TRUE,FALSE)
|
|||
|
,labels = c("Rural", "Urban")
|
|||
|
)
|
|||
|
) %>%
|
|||
|
ggplot(aes(x = year, y = percentage, color = rural)) +
|
|||
|
geom_line(aes(group = county),alpha = 0.3) +
|
|||
|
geom_smooth(aes(group = rural), method = "loess", se= FALSE, size = 1.1) +
|
|||
|
scale_color_brewer(palette = "Dark2") +
|
|||
|
labs(
|
|||
|
title = "Percent of Adults (20+) with Diagnosed Diabetes \nAll North Carolina Counties"
|
|||
|
,x = NULL
|
|||
|
,y = NULL
|
|||
|
,color = NULL
|
|||
|
)
|
|||
|
|
|||
|
g50
|
|||
|
|
|||
|
|
|||
|
# ---- c-g1 --------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
nc_counties_map_binned <- nc_counties_map %>%
|
|||
|
filter(year < 2015) %>%
|
|||
|
mutate(
|
|||
|
bin = dlookr::binning(.$percentage, nbins = 6 ,type = "equal")
|
|||
|
,bin = forcats::fct_recode(bin
|
|||
|
,"6.5 - 7.9" = "[6.5,7.97]"
|
|||
|
,"8.0 - 9.4" = "(7.97,9.43]"
|
|||
|
,"9.5 - 10.9" = "(9.43,10.9]"
|
|||
|
,"11.0 - 12.4" = "(10.9,12.4]"
|
|||
|
,"12.5 - 13.8" = "(12.4,13.8]"
|
|||
|
,"13.9 - 15.3" = "(13.8,15.3]"
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
c_g1 <- nc_counties_map_binned %>%
|
|||
|
filter(year %in% c(2006,2014)) %>%
|
|||
|
ggplot() +
|
|||
|
geom_sf() + #blank geom_sf keeps gridlines from overlapping map
|
|||
|
geom_sf(aes(fill = bin,color = rural)) +
|
|||
|
geom_sf(data = nc_cities) +
|
|||
|
ggrepel::geom_text_repel(data = nc_cities,
|
|||
|
aes(x = long, y = lat, label = city)
|
|||
|
,nudge_y = c(-1,1,1,-1,1)
|
|||
|
,nudge_x = c(0,0,0,-1,0)
|
|||
|
) +
|
|||
|
geom_text(data = . %>% filter(rural == TRUE)
|
|||
|
,aes(x = center_long, y = center_lat)
|
|||
|
,label = "R"
|
|||
|
,color = "#696969"
|
|||
|
) +
|
|||
|
coord_sf(xlim = c(-84.5,-75.5), ylim = c(33.75,37)) +
|
|||
|
facet_wrap(~year) +
|
|||
|
scale_fill_viridis_d(alpha = 0.6, direction = -1) +
|
|||
|
scale_color_manual(
|
|||
|
values = c(
|
|||
|
"FALSE" = "gray"
|
|||
|
,"TRUE" = "black"
|
|||
|
),guide = 'none') +
|
|||
|
labs(
|
|||
|
title = "Estimated Diabetes in Adults (20+) by County"
|
|||
|
,fill = "Percentage"
|
|||
|
,y = NULL
|
|||
|
,x = NULL
|
|||
|
) +
|
|||
|
theme(
|
|||
|
panel.background = element_rect(fill = "aliceblue")
|
|||
|
,panel.grid.major = element_line(color = "#D4D4D4", linetype = "dashed",
|
|||
|
size = 0.5)
|
|||
|
,legend.position = "bottom"
|
|||
|
,plot.title = element_text(hjust = 0.5)
|
|||
|
)
|
|||
|
|
|||
|
c_g1
|
|||
|
|
|||
|
# ---- county-distribution-histogram ------------------------------------
|
|||
|
|
|||
|
# Not USED
|
|||
|
c_g1a <- nc_counties_map_binned %>%
|
|||
|
mutate(
|
|||
|
rural = factor(rural
|
|||
|
,levels = c(TRUE,FALSE)
|
|||
|
,labels = c("Rural", "Urban")
|
|||
|
)
|
|||
|
) %>%
|
|||
|
filter(year %in% c(2006,2014)) %>%
|
|||
|
ggplot(aes(x = bin, fill = rural)) +
|
|||
|
geom_bar(stat = "count"
|
|||
|
,position = "dodge"
|
|||
|
) +
|
|||
|
geom_text(aes(label=..count..)
|
|||
|
,position = position_dodge(width = 1)
|
|||
|
,stat = "count"
|
|||
|
,vjust = -0.1
|
|||
|
,size = 5) +
|
|||
|
facet_wrap(~year) +
|
|||
|
scale_fill_brewer(palette = "Dark2") +
|
|||
|
labs(
|
|||
|
fill = NULL
|
|||
|
,x = NULL
|
|||
|
,y = NULL
|
|||
|
)
|
|||
|
|
|||
|
c_g1a
|
|||
|
|
|||
|
# ---- county-boxplot ----
|
|||
|
|
|||
|
c_g1c <- nc_counties_map %>%
|
|||
|
mutate(
|
|||
|
rural = factor(rural
|
|||
|
,levels = c(TRUE,FALSE)
|
|||
|
,labels = c("Rural", "Urban")
|
|||
|
)) %>%
|
|||
|
filter(year < 2015) %>%
|
|||
|
ggplot(aes(x = year, y = percentage, group = interaction(year,rural), fill = rural)) +
|
|||
|
geom_boxplot(alpha = 0.5) +
|
|||
|
scale_fill_brewer(palette = "Dark2") +
|
|||
|
scale_x_continuous(breaks = seq(2004,2014,2)) +
|
|||
|
labs(
|
|||
|
x = NULL
|
|||
|
,y = NULL
|
|||
|
,fill = NULL
|
|||
|
,title = "Distribution of Estimated Cases by County 2006 - 2014"
|
|||
|
)
|
|||
|
|
|||
|
c_g1c
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# ---- c-g4 ---------------------------------------------------------------
|
|||
|
d3 <- nc_counties_map %>%
|
|||
|
st_drop_geometry() %>%
|
|||
|
filter(year %in% c(2006,2014)) %>%
|
|||
|
select(-countyfips,-us_pct) %>%
|
|||
|
pivot_wider(names_from = "year"
|
|||
|
,values_from = "percentage") %>%
|
|||
|
mutate(
|
|||
|
pct_p = `2014` - `2006`
|
|||
|
,pct_c = ((`2014` - `2006`)/`2006`) * 100
|
|||
|
) %>%
|
|||
|
left_join(nc_counties_map_raw) %>%
|
|||
|
st_as_sf()
|
|||
|
|
|||
|
|
|||
|
c_g4 <- d3 %>%
|
|||
|
ggplot() +
|
|||
|
geom_sf() + #blank geom_sf keeps gridlines from overlapping map
|
|||
|
geom_sf(aes(fill = pct_c ,color = rural)) +
|
|||
|
geom_sf(data = nc_cities) +
|
|||
|
ggrepel::geom_text_repel(data = nc_cities,
|
|||
|
aes(x = long, y = lat, label = city)
|
|||
|
,nudge_y = c(-1,1,1,-1,1)
|
|||
|
,nudge_x = c(0,0,0,-1,0)
|
|||
|
) +
|
|||
|
geom_text(data = . %>% filter(rural == TRUE)
|
|||
|
,aes(x = center_long, y = center_lat)
|
|||
|
,label = "R"
|
|||
|
,color = "#696969"
|
|||
|
) +
|
|||
|
# scale_fill_viridis_c(alpha = 0.6, direction = -1) +
|
|||
|
scale_fill_gradient2(
|
|||
|
low = "#d01c8b"
|
|||
|
,mid = "#f7f7f7"
|
|||
|
,high = "#4dac26"
|
|||
|
,midpoint = 0
|
|||
|
) +
|
|||
|
scale_color_manual(
|
|||
|
values = c(
|
|||
|
"FALSE" = "gray"
|
|||
|
,"TRUE" = "black"
|
|||
|
),guide = 'none') +
|
|||
|
labs(
|
|||
|
title = "Percentage Change of Diagnosed Diabetes 2006-2014"
|
|||
|
,fill = "Percentage"
|
|||
|
,y = NULL
|
|||
|
,x = NULL
|
|||
|
) +
|
|||
|
theme(
|
|||
|
panel.background = element_rect(fill = "aliceblue")
|
|||
|
,panel.grid.major = element_line(color = "#D4D4D4", linetype = "dashed",
|
|||
|
size = 0.5)
|
|||
|
)
|
|||
|
|
|||
|
c_g4
|
|||
|
|
|||
|
|
|||
|
# ---- pct_p-histogram ----------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
d4 <- d3 %>%
|
|||
|
st_drop_geometry() %>%
|
|||
|
mutate(
|
|||
|
rural = factor(rural
|
|||
|
,levels = c(TRUE,FALSE)
|
|||
|
,labels = c("Rural", "Urban")
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
mean_d4 <- d4 %>%
|
|||
|
group_by(rural) %>%
|
|||
|
summarise(.groups = "keep"
|
|||
|
,pct_c = mean(pct_c)
|
|||
|
)
|
|||
|
|
|||
|
g51 <- d4 %>%
|
|||
|
ggplot(aes(x = pct_c, fill = rural, y = ..density.., color = rural)) +
|
|||
|
geom_histogram(binwidth = 5, position = "identity", alpha = 0.3) +
|
|||
|
geom_density(alpha = 0.5) +
|
|||
|
facet_wrap(~rural, ncol = 1) +
|
|||
|
geom_vline(aes(xintercept = pct_c), data = mean_d4) +
|
|||
|
geom_text(aes(x = pct_c, y = 0.038, label = round(pct_c, 2))
|
|||
|
,data = mean_d4
|
|||
|
,hjust = -0.15
|
|||
|
,size = 5
|
|||
|
,color = "#000000") +
|
|||
|
geom_vline(xintercept = 0, linetype = "dashed", color = "#696969") +
|
|||
|
scale_color_brewer(palette = "Dark2", guide = NULL) +
|
|||
|
scale_fill_brewer(palette = "Dark2", guide = NULL) +
|
|||
|
labs(
|
|||
|
x = "Percentage Change"
|
|||
|
,y = "Density"
|
|||
|
,fill = NULL
|
|||
|
)
|
|||
|
g51
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|