quarto-blog/posts/2024-09-27_coffee_taste_test/taste_test.R

102 lines
3.4 KiB
R
Raw Permalink Normal View History

2024-09-27 14:54:08 -04:00
# ---- Clean Environment ----
rm(list = ls())
2024-10-11 08:56:17 -04:00
# ---- Load Packages ----
2024-09-27 14:54:08 -04:00
box::use(
2024-09-29 08:53:54 -04:00
readr[read_csv],
2024-10-11 08:56:17 -04:00
rlang[`!!`, sym]
2024-09-27 14:54:08 -04:00
)
2024-10-11 08:56:17 -04:00
# ---- Load Data ----
2024-09-29 08:53:54 -04:00
url <- "https://bit.ly/gacttCSV"
ds_raw <- read_csv(url)
2024-10-11 08:56:17 -04:00
# ---- Count NAs ----
2024-09-29 08:53:54 -04:00
nrow(ds_raw)
na_count <- ds_raw |>
2024-10-11 08:56:17 -04:00
dplyr::mutate(num_na = rowSums(is.na(ds_raw))) |>
2024-09-29 08:53:54 -04:00
dplyr::summarise(
n = dplyr::n(),
.by = num_na
)
# don't show this in blog but note that I did it
ds_raw |>
dplyr::summarise(dplyr::across(dplyr::everything(), ~ sum(is.na(.)), .names = "{.col}")) |>
tidyr::pivot_longer(tidyr::everything()) |>
dplyr::arrange(desc(value)) |>
print(n = 50)
2024-10-11 08:56:17 -04:00
# --- Clean Data ----
#' Remove columns with a lot of NA's, selected only columns to allow for a pretty complete data set
#' At the end of selection, drop NA's so that all rows are fully complete. This will avoid having to infer any data for ML
2024-09-29 08:53:54 -04:00
ds <- ds_raw |>
dplyr::select(
ID = `Submission ID`,
age = `What is your age?`,
cups = `How many cups of coffee do you typically drink per day?`,
where_drink = `Where do you typically drink coffee?`,
brew_method = `How do you brew coffee at home?`,
favorite = `What is your favorite coffee drink?`,
additions = `Do you usually add anything to your coffee?`,
style = `Before today's tasting, which of the following best described what kind of coffee you like?`,
strength = `How strong do you like your coffee?`,
roast_level = `What roast level of coffee do you prefer?`,
why_drink = `Why do you drink coffee?`,
taste = `Do you like the taste of coffee?`,
gender = Gender,
education_level = `Education Level`,
ethnicity = `Ethnicity/Race`,
employment = `Employment Status`,
political_view = `Political Affiliation`
) |>
tidyr::drop_na()
2024-10-11 08:56:17 -04:00
skimr::skim(ds)
# ---- Split Multi choice Columns ----
#' Function to split columns that contain multiple choice answers all in one column
#' result of function is each column contains original column name, followed by the answer choice
#' 1 is True, 0 False for the original column containing that choice
multi_choice_split <- function(ds, col) {
col <- sym(col)
ds |>
dplyr::select(ID, !!col) |>
tidyr::separate_longer_delim(!!col, delim = ",") |>
dplyr::mutate(dplyr::across(!!col, ~stringr::str_trim(., side = "both"))) |>
dplyr::mutate(dplyr::across(!!col, snakecase::to_snake_case)) |>
dplyr::group_by(ID, !!col) |>
dplyr::summarise(n = dplyr::n()) |>
dplyr::ungroup() |>
tidyr::pivot_wider(names_from = !!col, values_from = n, names_prefix = glue::glue("{col}_")) |>
{\(.) {replace(.,is.na(.),0)}}() #anonymous function to use native pipe
}
#' purr map, maps over each column choice returning a data frame for that col, map returns a list of data frames
#' the use of purrr reduce takes the list, and left joins each data frame by the ID col.
cols_to_split <- c("where_drink", "brew_method", "additions", "why_drink")
ds_ml <- purrr::map(cols_to_split, \(x) multi_choice_split(ds, x)) |>
purrr::reduce(dplyr::left_join, by = "ID") |>
dplyr::left_join(ds, by = "ID") |>
dplyr::select(-dplyr::any_of(cols_to_split)) |>
dplyr::mutate(dplyr::across(dplyr::where(is.character) & !ID, as.factor)) # note use of ! to not select the ID column
# ---- Data Summaries ----
#need to expand this section to better explore cleaned data
summarytools::freq(ds_ml)
2024-09-29 08:53:54 -04:00
2024-10-11 08:56:17 -04:00
# ----