DHSC-Capstone/ML/2-modeling-reg.R
2023-03-17 16:13:34 -04:00

133 lines
3.3 KiB
R

# The following script is for training and testing Regression models
rm(list = ls(all.names = TRUE)) # Clear the memory of variables from previous run.
cat("\014") # Clear the console
# load packages -----------------------------------------------------------
box::use(
magrittr[`%>%`]
,here[here]
,readr
,gp2 = ggplot2[ggplot, aes]
,rsample
,r = recipes
,wf = workflows
,p = parsnip[tune]
,ys = yardstick
,d = dials
,rsamp = rsample
,tune
)
# globals -----------------------------------------------------------------
set.seed(070823) #set seed for reproducible research
# load-data ---------------------------------------------------------------
model_data <- readr$read_rds(here("ML","data-unshared","model_data.RDS"))
# split data --------------------------------------------------------------
model_data_split <- rsample$initial_split(
model_data
,prop = 0.80
,strata = ft4_dia
)
ds_train <- rsample$training(model_data_split)
ds_test <- rsample$testing(model_data_split)
# verify distribution of data
table(ds_train$ft4_dia) %>% prop.table()
table(ds_test$ft4_dia) %>% prop.table()
ds_train <- ds_train %>% dplyr::select(-ft4_dia)
ds_test <- ds_test %>% dplyr::select(-ft4_dia)
data_folds <- rsamp$vfold_cv(ds_train, repeats = 5)
# recipes ------------------------------------------------------------------
# Neural Net, KNN
normalized_rec <- r$recipe(FT4 ~ ., data = ds_train) %>%
r$update_role(subject_id, new_role = "id") %>%
r$update_role(charttime, new_role = "time") %>%
r$step_impute_bag(r$all_predictors()) %>%
r$step_BoxCox(r$all_numeric()) %>%
r$step_corr(r$all_numeric_predictors()) %>%
r$step_normalize(r$all_numeric())
# Random Forest and Boasted Tree
rf_rec <- r$recipe(FT4 ~ . , data = ds_train) %>%
r$update_role(subject_id, new_role = "id") %>%
r$update_role(charttime, new_role = "time") %>%
r$step_impute_bag(r$all_predictors())
# models ------------------------------------------------------------------
nnet_spec <-
p$mlp(hidden_units = tune(), penalty = tune(), epochs = tune()) %>%
p$set_engine("nnet", MaxNWts = 2600) %>%
p$set_mode("regression")
knn_spec <-
p$nearest_neighbor(neighbors = tune(), dist_power = tune(), weight_func = tune()) %>%
p$set_engine("kknn") %>%
p$set_mode("regression")
rf_spec <-
p$rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
p$set_engine("ranger") %>%
p$set_mode("regression")
xgb_spec <-
p$boost_tree(tree_depth = tune(), learn_rate = tune(), loss_reduction = tune(),
min_n = tune(), sample_size = tune(), trees = tune()) %>%
p$set_engine("xgboost") %>%
p$set_mode("regression")
nnet_param <-
nnet_spec %>%
tune$extract_parameter_set_dials() %>%
update(hidden_units = d$hidden_units(c(1, 27)))
# workflows ---------------------------------------------------------------
normalized <-
workflowsets::workflow_set(
preproc = list(normalized = normalized_rec),
models = list(KNN = knn_spec, neural_network = nnet_spec)
) %>%
workflowsets::option_add(param_info = nnet_param, id = "normalized_neural_network")
forests <-
workflowsets::workflow_set(
preproc = list(forests = rf_rec),
models = list(RF = rf_spec, boosting = xgb_spec)
)
all_workflows <-
dplyr::bind_rows(normalized, forests) %>%
dplyr::mutate(wflow_id = gsub("(forests_)|(normalized_)", "", wflow_id))