DHSC-Capstone/ML/2-modeling.R
2023-04-19 10:11:00 -04:00

315 lines
7.8 KiB
R

# Random Forests are the best models for both types finalize grid searchs
rm(list = ls(all.names = TRUE)) # Clear the memory of variables from previous run.
cat("\014") # Clear the console
# load packages -----------------------------------------------------------
box::use(
magrittr[`%>%`]
,here[here]
,readr
,gp2 = ggplot2[ggplot, aes]
,rsample
,r = recipes
,wf = workflows
,p = parsnip[tune]
,ys = yardstick
,d = dials
,rsamp = rsample
,tune
)
require(ggplot2) #this is needed for autoplot to work with workflows
# globals -----------------------------------------------------------------
set.seed(070823) #set seed for reproducible research
# load-data ---------------------------------------------------------------
model_data <- readr$read_rds(here("ML","data-unshared","model_data.RDS")) %>%
dplyr::select(-subject_id, -charttime)
# split data --------------------------------------------------------------
model_data_split <- rsample$initial_split(
model_data
,prop = 0.80
,strata = ft4_dia
)
ds_train <- rsample$training(model_data_split)
ds_test <- rsample$testing(model_data_split)
# verify distribution of data
table(ds_train$ft4_dia) %>% prop.table()
table(ds_test$ft4_dia) %>% prop.table()
# random forest classification -----------------------------------------------------------
rf_recipe <- r$recipe(ft4_dia ~ . , data = ds_train) %>%
r$step_rm(FT4) %>%
r$step_impute_bag(r$all_predictors())
rf_tuning_model <- p$rand_forest(trees = tune(), mtry = tune(), min_n = tune()) %>%
p$set_engine("ranger") %>% p$set_mode("classification")
rf_workflow <- wf$workflow() %>%
wf$add_model(rf_tuning_model) %>%
wf$add_recipe(rf_recipe)
rf_param <- p$extract_parameter_set_dials(rf_tuning_model)
rf_param <- rf_param %>% update(mtry = d$finalize(d$mtry(), ds_train))
data_fold <- rsamp$vfold_cv(ds_train, v = 5)
# takes around 1 hr to run grid search. saving best params manaually
# rf_tune <- rf_workflow %>%
# tune::tune_grid(
# data_fold
# ,grid = rf_param %>% d$grid_regular()
# )
rf_best_params <- tibble::tibble(
mtry = 8
,trees = 2000
,min_n = 2
)
final_rf_workflow <- rf_workflow %>%
tune::finalize_workflow(rf_best_params)
# Final Fit training data
final_rf_fit <- p$fit(final_rf_workflow, ds_train)
final_rf_predict <- ds_train %>%
dplyr::select(ft4_dia) %>%
dplyr::bind_cols(
predict(final_rf_fit, ds_train)
,predict(final_rf_fit, ds_train, type = "prob")
)
ys$accuracy(final_rf_predict,truth = ft4_dia, estimate = .pred_class )
final_conf_rf <- ys$conf_mat(final_rf_predict, ft4_dia, .pred_class)
# fitting test data
class_test_results <-
final_rf_fit %>%
tune::last_fit(split = model_data_split)
class_test_result_conf_matrix <- ys$conf_mat(
class_test_results %>% tune::collect_predictions()
,truth = ft4_dia
,estimate = .pred_class
)
# x-boost- class ----------------------------------------------------------
x_boost_rec <- r$recipe(ft4_dia ~ . , data = ds_train) %>%
r$step_rm(FT4) %>%
r$step_impute_bag(r$all_predictors()) %>%
r$step_dummy(gender)
xgb_spec <-
p$boost_tree(tree_depth = tune(), learn_rate = tune(), loss_reduction = tune(),
min_n = tune(), sample_size = tune(), trees = tune()) %>%
p$set_engine("xgboost") %>%
p$set_mode("classification")
xboost_wf <- wf$workflow() %>%
wf$add_model(xgb_spec) %>%
wf$add_recipe(x_boost_rec)
xboost_parms <- p$extract_parameter_set_dials(xgb_spec)
# takes around 6 hours to tune
# xboost_tune <- xboost_wf %>%
# tune::tune_grid(
# data_fold
# ,grid = xboost_parms%>% d$grid_regular()
# ,control = tune::control_grid(verbose = TRUE)
# )
xboost_best_params <- readRDS(here::here("ML", "outputs", "xboosttune_class.rds")) %>%
tune::select_best(metric = "accuracy")
final_xboost_wf <- xboost_wf %>%
tune::finalize_workflow(xboost_best_params)
# fit training data to best model
final_xboost_fit <- p$fit(final_xboost_wf, ds_train)
final_xboost_predict <- ds_train %>%
dplyr::select(ft4_dia) %>%
dplyr::bind_cols(
predict(final_xboost_fit, ds_train)
,predict(final_xboost_fit, ds_train, type = "prob")
)
ys$accuracy(final_xboost_predict,truth = ft4_dia, estimate = .pred_class )
final_conf_xboost <- ys$conf_mat(final_xboost_predict, ft4_dia, .pred_class)
# fitting test data
class_test_results_boost <-
final_xboost_fit %>%
tune::last_fit(split = model_data_split)
ys$accuracy(class_test_results_boost %>% tune::collect_predictions()
,truth = ft4_dia, estimate = .pred_class )
class_test_result_conf_matrix <- ys$conf_mat(
class_test_results_boost %>% tune::collect_predictions()
,truth = ft4_dia
,estimate = .pred_class
)
# random forest regression ------------------------------------------------
#
reg_metrics <- ys$metric_set(ys$rmse, ys$rsq, ys$mae)
rf_reg_tune_model <- p$rand_forest(trees = tune(), mtry = tune(), min_n = tune()) %>%
p$set_engine("ranger") %>% p$set_mode("regression")
rf_reg_recipe <- r$recipe(FT4 ~ . , data = ds_train) %>%
r$step_rm(ft4_dia) %>%
r$step_impute_bag(r$all_predictors())
rf_reg_workflow <- wf$workflow() %>%
wf$add_model(rf_reg_tune_model) %>%
wf$add_recipe(rf_reg_recipe)
rf_reg_param <- p$extract_parameter_set_dials(rf_reg_tune_model) %>%
update(mtry = d$finalize(d$mtry(), ds_train))
data_fold_reg <- rsamp$vfold_cv(ds_train, v = 5)
# takes around 1 hr to run grid search. saving best params manaually
# rf_reg_tune <- rf_reg_workflow %>%
# tune::tune_grid(
# data_fold_reg
# ,grid = rf_reg_param %>% d$grid_regular()
# )
rf_reg_best_params <- tibble::tibble(
mtry = 8
,trees = 1000
,min_n = 2
)
final_rf_reg_workflow <- rf_reg_workflow %>%
tune::finalize_workflow(rf_reg_best_params)
final_rf_reg_fit <- p$fit(final_rf_reg_workflow, ds_train)
# predictions for training data
final_rf_reg_predict <- ds_train %>%
dplyr::select(FT4, TSH, ft4_dia) %>%
dplyr::bind_cols(
predict(final_rf_reg_fit, ds_train)
) %>%
dplyr::mutate(
ft4_dia_pred = dplyr::case_when(
TSH > 4.2 & `.pred` < 0.93 ~ "Hypo"
,TSH > 4.2 & `.pred` > 0.93 ~ "Non-Hypo"
,TSH < 0.27 & `.pred` > 1.7 ~ "Hyper"
,TSH < 0.27 & `.pred` < 1.7 ~ "Non-Hyper"
)
) %>%
dplyr::mutate(dplyr::across(
ft4_dia_pred
, ~factor(., levels = c("Hypo", "Non-Hypo","Hyper", "Non-Hyper")
)
)
)
ys$conf_mat(final_rf_reg_predict,truth = ft4_dia ,estimate = ft4_dia_pred)
ys$accuracy(final_rf_reg_predict,truth = ft4_dia, estimate = ft4_dia_pred)
reg_metrics(final_rf_reg_predict, truth = FT4, estimate = .pred)
ggplot(final_rf_reg_predict, aes(x = FT4, y = .pred)) +
gp2$geom_abline(lty = 2) +
gp2$geom_point(alpha = 0.5) +
tune::coord_obs_pred()
# fitting test data
reg_test_results <-
final_rf_reg_fit %>%
tune::last_fit(split = model_data_split)
ds_reg_class_pred <- reg_test_results %>%
tune::collect_predictions() %>%
dplyr::select(-id, -.config) %>%
dplyr::bind_cols(ds_test %>% dplyr::select(TSH, ft4_dia)) %>%
dplyr::mutate(
ft4_dia_pred = dplyr::case_when(
TSH > 4.2 & `.pred` < 0.93 ~ "Hypo"
,TSH > 4.2 & `.pred` > 0.93 ~ "Non-Hypo"
,TSH < 0.27 & `.pred` > 1.7 ~ "Hyper"
,TSH < 0.27 & `.pred` < 1.7 ~ "Non-Hyper"
)
) %>%
dplyr::mutate(dplyr::across(
ft4_dia_pred
, ~factor(., levels = c("Hypo", "Non-Hypo","Hyper", "Non-Hyper")
)
)
)
ys$accuracy(ds_reg_class_pred,truth = ft4_dia, estimate = ft4_dia_pred)
ys$conf_mat(ds_reg_class_pred,truth = ft4_dia ,estimate = ft4_dia_pred)
tune::collect_metrics(reg_test_results)
ggplot(reg_test_results %>% tune::collect_predictions() , aes(x = FT4, y = .pred)) +
gp2$geom_abline(lty = 2) +
gp2$geom_point(alpha = 0.5) +
tune::coord_obs_pred()
# check orginal data
model_data %>%
dplyr::mutate(tsh_level = ifelse(TSH > 4.2, "high", "low")) %>%
dplyr::group_by(tsh_level, ft4_dia) %>%
dplyr::summarise(
n = n()
) %>%
mutate(freq = n / sum(n))