DHSC-Capstone/ML/2-modeling.R
2023-01-31 15:29:27 -05:00

77 lines
1.7 KiB
R

rm(list = ls(all.names = TRUE)) # Clear the memory of variables from previous run.
cat("\014") # Clear the console
# load packages -----------------------------------------------------------
box::use(
magrittr[`%>%`]
,here[here]
,readr
,gp2 = ggplot2[ggplot, aes]
,rsample
,r = recipes
,wf = workflows
,p = parsnip
,ys = yardstick
)
# globals -----------------------------------------------------------------
set.seed(070823) #set seed for reproducible research
# load-data ---------------------------------------------------------------
model_data <- readr$read_rds(here("ML","data-unshared","model_data.RDS"))
# split data --------------------------------------------------------------
model_data_split <- rsample$initial_split(
model_data
,prop = 0.80
,strata = ft4_dia
)
ds_train <- rsample$training(model_data_split)
ds_test <- rsample$testing(model_data_split)
# verify distribution of data
table(ds_train$ft4_dia) %>% prop.table()
table(ds_test$ft4_dia) %>% prop.table()
# random forest -----------------------------------------------------------
rf_model <- p$rand_forest(trees = 1900) %>%
p$set_engine("ranger") %>% p$set_mode("classification")
rf_recipe <- r$recipe(ft4_dia ~ . , data = ds_train) %>%
r$update_role(subject_id, new_role = "id") %>%
r$update_role(charttime, new_role = "time") %>%
r$step_impute_bag(r$all_numeric())
rf_workflow <- wf$workflow() %>%
wf$add_model(rf_model) %>%
wf$add_recipe(rf_recipe)
rf_fit <- p$fit(rf_workflow, ds_train)
rf_predict <- ds_train %>%
dplyr::select(ft4_dia) %>%
dplyr::bind_cols(
predict(rf_fit, ds_train)
,predict(rf_fit, ds_train, type = "prob")
)
ys$accuracy(rf_predict, ft4_dia, .pred_class)
ys$conf_mat(rf_predict, ft4_dia, .pred_class)