Update 2-modeling.R

This commit is contained in:
Kyle Belanger 2023-02-02 13:23:28 -05:00
parent 919e1ac1b6
commit 9cb7fe3e13

View file

@ -12,8 +12,10 @@ box::use(
,rsample ,rsample
,r = recipes ,r = recipes
,wf = workflows ,wf = workflows
,p = parsnip ,p = parsnip[tune]
,ys = yardstick ,ys = yardstick
,d = dials
,rsamp = rsample
) )
@ -47,11 +49,11 @@ table(ds_test$ft4_dia) %>% prop.table()
class_train <- ds_train %>% dplyr::select(-FT4) # training data for classification models class_train <- ds_train %>% dplyr::select(-FT4) # training data for classification models
reg_train <- ds_train %>% dplyr::select(-ft4_dia) # training data for reg models predicting result reg_train <- ds_train %>% dplyr::select(-ft4_dia) # training data for reg models predicting result
# random forest ----------------------------------------------------------- # random forest classification -----------------------------------------------------------
# base model - No Hyper Tuning # base model - No Hyper Tuning
rf_model <- p$rand_forest(trees = 1900) %>% rf__base_model <- p$rand_forest() %>%
p$set_engine("ranger") %>% p$set_mode("classification") p$set_engine("ranger") %>% p$set_mode("classification")
rf_recipe <- r$recipe(ft4_dia ~ . , data = class_train) %>% rf_recipe <- r$recipe(ft4_dia ~ . , data = class_train) %>%
@ -61,27 +63,38 @@ rf_recipe <- r$recipe(ft4_dia ~ . , data = class_train) %>%
rf_workflow <- wf$workflow() %>% rf_workflow <- wf$workflow() %>%
wf$add_model(rf_model) %>% wf$add_model(rf__base_model) %>%
wf$add_recipe(rf_recipe) wf$add_recipe(rf_recipe)
rf_fit <- p$fit(rf_workflow, class_train) rf_base_fit <- p$fit(rf_workflow, class_train)
rf_predict <- class_train %>% rf_predict <- class_train %>%
dplyr::select(ft4_dia) %>% dplyr::select(ft4_dia) %>%
dplyr::bind_cols( dplyr::bind_cols(
predict(rf_fit, class_train) predict(rf_base_fit, class_train)
,predict(rf_fit, class_train, type = "prob") ,predict(rf_base_fit, class_train, type = "prob")
) )
conf_mat_rf <- ys$conf_mat(rf_predict, ft4_dia, .pred_class) conf_mat_rf <- ys$conf_mat(rf_predict, ft4_dia, .pred_class)
# explainer_rf <- DALEXtra::explain_tidymodels(
# rf_fit
# ,data = class_train
# ,y = class_train$ft4_dia
# )
# this takes awhile to run
#vip_lm <- DALEX::model_parts(explainer_rf)
#plot(vip_lm) rf_pred <- dplyr::select(class_train, -ft4_dia, -subject_id, -charttime)
rf_tuning_model <- p$rand_forest(trees = tune(), mtry = tune(), min_n = tune()) %>%
p$set_engine("ranger") %>% p$set_mode("classification")
rf_param <- p$extract_parameter_set_dials(rf_tuning_model)
rf_param <- rf_param %>% update(mtry = d$finalize(d$mtry(), rf_pred))
data_fold <- rsamp$vfold_cv(class_train, v = 5)
rf_workflow <- wf$update_model(rf_workflow, rf_tuning_model)
rf_tune <- rf_workflow %>%
tune::tune_grid(
data_fold
,grid = rf_param %>% d$grid_regular()
)