updates
This commit is contained in:
parent
3251c95310
commit
65f773674d
6 changed files with 69 additions and 2 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -67,3 +67,4 @@ ML/outputs
|
||||||
|
|
||||||
|
|
||||||
Final Paper/
|
Final Paper/
|
||||||
|
test.Rda
|
||||||
|
|
|
@ -47,9 +47,12 @@ ds_train <- rsample$training(model_data_split)
|
||||||
ds_test <- rsample$testing(model_data_split)
|
ds_test <- rsample$testing(model_data_split)
|
||||||
|
|
||||||
# verify distribution of data
|
# verify distribution of data
|
||||||
table(ds_train$ft4_dia) %>% prop.table()
|
strata1 <- table(ds_train$ft4_dia) %>% prop.table() %>% tibble::enframe() %>% dplyr::rename(Train = value)
|
||||||
table(ds_test$ft4_dia) %>% prop.table()
|
strata2 <- table(ds_test$ft4_dia) %>% prop.table() %>% tibble::enframe() %>% dplyr::rename(Test = value)
|
||||||
|
|
||||||
|
strata_table <- strata1 %>%
|
||||||
|
dplyr::left_join(strata2) %>%
|
||||||
|
dplyr::rename(Class = name)
|
||||||
|
|
||||||
# random forest classification -----------------------------------------------------------
|
# random forest classification -----------------------------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -10,6 +10,8 @@ book:
|
||||||
- chapter1.qmd
|
- chapter1.qmd
|
||||||
- chapter2.qmd
|
- chapter2.qmd
|
||||||
- chapter3.qmd
|
- chapter3.qmd
|
||||||
|
- chapter4.qmd
|
||||||
|
- chapter5.qmd
|
||||||
- references.qmd
|
- references.qmd
|
||||||
abstract: "This is a test to see what happens with this"
|
abstract: "This is a test to see what happens with this"
|
||||||
|
|
||||||
|
|
45
chapter4.qmd
Normal file
45
chapter4.qmd
Normal file
|
@ -0,0 +1,45 @@
|
||||||
|
# Results
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
#| include: false
|
||||||
|
#| cache: true
|
||||||
|
|
||||||
|
library(magrittr)
|
||||||
|
load("test.Rda")
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
The final data set used for this analysis consisted of 11,340
|
||||||
|
observations. All observations contained a TSH and Free T4 result and
|
||||||
|
less than three missing results from all other analytes selected for the
|
||||||
|
study. The dataset was then randomly split into a training set
|
||||||
|
containing 9071 observations and a testing set containing 2269
|
||||||
|
observations. The data was split using stratification of the Free T4
|
||||||
|
laboratory diagnostic value. @tbl-strata shows the split percentages.
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
#| label: tbl-strata
|
||||||
|
#| tbl-cap: Data Stratification
|
||||||
|
#| echo: false
|
||||||
|
|
||||||
|
strata_table %>% knitr::kable()
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
First, the report shows the ability of classification algorithms to
|
||||||
|
predict whether Free T4 will be diagnostic, with the prediction quality
|
||||||
|
measured by Area Under Curve (AUC) and accuracy. Data regarding the
|
||||||
|
univariate association between each predictor analyte and the Free T4
|
||||||
|
Diagnostic value is then presented. Finally, data is presented with the
|
||||||
|
extent to which FT4 can be predicted by examining the correlation
|
||||||
|
statistics denoting the relationship between measured and predicted Free
|
||||||
|
T4 values.
|
||||||
|
|
||||||
|
## Predictability of Free T4 Classifications
|
||||||
|
|
||||||
|
In clinical decision-making, a key consideration in interpreting
|
||||||
|
numerical laboratory results is often just whether the results fall
|
||||||
|
within the normal reference range [@luo2016]. In the case of Free T4
|
||||||
|
reflex testing, the results will either fall within the normal range
|
||||||
|
indicating the Free T4 is not diagnostic of Hyper or Hypo Throydism, or
|
||||||
|
they will fall outside those ranges indicating they are diagnostic.
|
1
chapter5.qmd
Normal file
1
chapter5.qmd
Normal file
|
@ -0,0 +1 @@
|
||||||
|
|
|
@ -335,3 +335,18 @@ DOI: 10.13026/S6N6-XD98}
|
||||||
url = {https://dl.acm.org/doi/10.1145/2939672.2939785},
|
url = {https://dl.acm.org/doi/10.1145/2939672.2939785},
|
||||||
address = {New York, NY, USA}
|
address = {New York, NY, USA}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@article{luo2016,
|
||||||
|
title = {Using Machine Learning to Predict Laboratory Test Results},
|
||||||
|
author = {Luo, Yuan and Szolovits, Peter and Dighe, Anand S. and Baron, Jason M.},
|
||||||
|
year = {2016},
|
||||||
|
month = {06},
|
||||||
|
date = {2016-06},
|
||||||
|
journal = {American Journal of Clinical Pathology},
|
||||||
|
pages = {778--788},
|
||||||
|
volume = {145},
|
||||||
|
number = {6},
|
||||||
|
doi = {10.1093/ajcp/aqw064},
|
||||||
|
note = {PMID: 27329638},
|
||||||
|
langid = {eng}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in a new issue