updates
This commit is contained in:
parent
3251c95310
commit
65f773674d
6 changed files with 69 additions and 2 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -67,3 +67,4 @@ ML/outputs
|
|||
|
||||
|
||||
Final Paper/
|
||||
test.Rda
|
||||
|
|
|
@ -47,9 +47,12 @@ ds_train <- rsample$training(model_data_split)
|
|||
ds_test <- rsample$testing(model_data_split)
|
||||
|
||||
# verify distribution of data
|
||||
table(ds_train$ft4_dia) %>% prop.table()
|
||||
table(ds_test$ft4_dia) %>% prop.table()
|
||||
strata1 <- table(ds_train$ft4_dia) %>% prop.table() %>% tibble::enframe() %>% dplyr::rename(Train = value)
|
||||
strata2 <- table(ds_test$ft4_dia) %>% prop.table() %>% tibble::enframe() %>% dplyr::rename(Test = value)
|
||||
|
||||
strata_table <- strata1 %>%
|
||||
dplyr::left_join(strata2) %>%
|
||||
dplyr::rename(Class = name)
|
||||
|
||||
# random forest classification -----------------------------------------------------------
|
||||
|
||||
|
|
|
@ -10,6 +10,8 @@ book:
|
|||
- chapter1.qmd
|
||||
- chapter2.qmd
|
||||
- chapter3.qmd
|
||||
- chapter4.qmd
|
||||
- chapter5.qmd
|
||||
- references.qmd
|
||||
abstract: "This is a test to see what happens with this"
|
||||
|
||||
|
|
45
chapter4.qmd
Normal file
45
chapter4.qmd
Normal file
|
@ -0,0 +1,45 @@
|
|||
# Results
|
||||
|
||||
```{r}
|
||||
#| include: false
|
||||
#| cache: true
|
||||
|
||||
library(magrittr)
|
||||
load("test.Rda")
|
||||
|
||||
```
|
||||
|
||||
The final data set used for this analysis consisted of 11,340
|
||||
observations. All observations contained a TSH and Free T4 result and
|
||||
less than three missing results from all other analytes selected for the
|
||||
study. The dataset was then randomly split into a training set
|
||||
containing 9071 observations and a testing set containing 2269
|
||||
observations. The data was split using stratification of the Free T4
|
||||
laboratory diagnostic value. @tbl-strata shows the split percentages.
|
||||
|
||||
```{r}
|
||||
#| label: tbl-strata
|
||||
#| tbl-cap: Data Stratification
|
||||
#| echo: false
|
||||
|
||||
strata_table %>% knitr::kable()
|
||||
|
||||
```
|
||||
|
||||
First, the report shows the ability of classification algorithms to
|
||||
predict whether Free T4 will be diagnostic, with the prediction quality
|
||||
measured by Area Under Curve (AUC) and accuracy. Data regarding the
|
||||
univariate association between each predictor analyte and the Free T4
|
||||
Diagnostic value is then presented. Finally, data is presented with the
|
||||
extent to which FT4 can be predicted by examining the correlation
|
||||
statistics denoting the relationship between measured and predicted Free
|
||||
T4 values.
|
||||
|
||||
## Predictability of Free T4 Classifications
|
||||
|
||||
In clinical decision-making, a key consideration in interpreting
|
||||
numerical laboratory results is often just whether the results fall
|
||||
within the normal reference range [@luo2016]. In the case of Free T4
|
||||
reflex testing, the results will either fall within the normal range
|
||||
indicating the Free T4 is not diagnostic of Hyper or Hypo Throydism, or
|
||||
they will fall outside those ranges indicating they are diagnostic.
|
1
chapter5.qmd
Normal file
1
chapter5.qmd
Normal file
|
@ -0,0 +1 @@
|
|||
|
|
@ -335,3 +335,18 @@ DOI: 10.13026/S6N6-XD98}
|
|||
url = {https://dl.acm.org/doi/10.1145/2939672.2939785},
|
||||
address = {New York, NY, USA}
|
||||
}
|
||||
|
||||
@article{luo2016,
|
||||
title = {Using Machine Learning to Predict Laboratory Test Results},
|
||||
author = {Luo, Yuan and Szolovits, Peter and Dighe, Anand S. and Baron, Jason M.},
|
||||
year = {2016},
|
||||
month = {06},
|
||||
date = {2016-06},
|
||||
journal = {American Journal of Clinical Pathology},
|
||||
pages = {778--788},
|
||||
volume = {145},
|
||||
number = {6},
|
||||
doi = {10.1093/ajcp/aqw064},
|
||||
note = {PMID: 27329638},
|
||||
langid = {eng}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue