2023-01-22 15:26:44 -05:00
|
|
|
rm(list = ls(all.names = TRUE)) # Clear the memory of variables from previous run.
|
|
|
|
cat("\014") # Clear the console
|
|
|
|
|
|
|
|
|
|
|
|
# load packages -----------------------------------------------------------
|
|
|
|
|
|
|
|
box::use(
|
|
|
|
magrittr[`%>%`]
|
|
|
|
,here[here]
|
|
|
|
,readr
|
|
|
|
,gp2 = ggplot2[ggplot, aes]
|
2023-01-22 15:38:44 -05:00
|
|
|
,rsample
|
2023-01-31 09:02:19 -05:00
|
|
|
,r = recipes
|
|
|
|
,wf = workflows
|
2023-02-02 13:23:28 -05:00
|
|
|
,p = parsnip[tune]
|
2023-01-31 15:29:27 -05:00
|
|
|
,ys = yardstick
|
2023-02-02 13:23:28 -05:00
|
|
|
,d = dials
|
|
|
|
,rsamp = rsample
|
2023-01-22 15:26:44 -05:00
|
|
|
)
|
|
|
|
|
2023-01-22 15:38:44 -05:00
|
|
|
|
|
|
|
|
|
|
|
# globals -----------------------------------------------------------------
|
|
|
|
|
|
|
|
set.seed(070823) #set seed for reproducible research
|
|
|
|
|
|
|
|
|
|
|
|
# load-data ---------------------------------------------------------------
|
|
|
|
|
|
|
|
model_data <- readr$read_rds(here("ML","data-unshared","model_data.RDS"))
|
|
|
|
|
|
|
|
|
|
|
|
# split data --------------------------------------------------------------
|
|
|
|
|
|
|
|
model_data_split <- rsample$initial_split(
|
|
|
|
model_data
|
|
|
|
,prop = 0.80
|
|
|
|
,strata = ft4_dia
|
|
|
|
)
|
|
|
|
|
|
|
|
ds_train <- rsample$training(model_data_split)
|
|
|
|
ds_test <- rsample$testing(model_data_split)
|
|
|
|
|
|
|
|
# verify distribution of data
|
|
|
|
table(ds_train$ft4_dia) %>% prop.table()
|
|
|
|
table(ds_test$ft4_dia) %>% prop.table()
|
|
|
|
|
2023-01-31 09:02:19 -05:00
|
|
|
|
2023-02-01 11:00:57 -05:00
|
|
|
class_train <- ds_train %>% dplyr::select(-FT4) # training data for classification models
|
|
|
|
reg_train <- ds_train %>% dplyr::select(-ft4_dia) # training data for reg models predicting result
|
2023-01-31 09:02:19 -05:00
|
|
|
|
2023-02-02 13:23:28 -05:00
|
|
|
# random forest classification -----------------------------------------------------------
|
2023-01-31 09:02:19 -05:00
|
|
|
|
2023-02-01 11:00:57 -05:00
|
|
|
# base model - No Hyper Tuning
|
2023-01-31 15:29:27 -05:00
|
|
|
|
2023-02-02 13:23:28 -05:00
|
|
|
rf__base_model <- p$rand_forest() %>%
|
2023-02-01 11:00:57 -05:00
|
|
|
p$set_engine("ranger") %>% p$set_mode("classification")
|
2023-01-31 09:02:19 -05:00
|
|
|
|
2023-02-01 11:00:57 -05:00
|
|
|
rf_recipe <- r$recipe(ft4_dia ~ . , data = class_train) %>%
|
2023-01-31 09:02:19 -05:00
|
|
|
r$update_role(subject_id, new_role = "id") %>%
|
|
|
|
r$update_role(charttime, new_role = "time") %>%
|
2023-01-31 19:33:24 -05:00
|
|
|
r$step_impute_bag(r$all_predictors())
|
2023-01-31 09:02:19 -05:00
|
|
|
|
|
|
|
|
|
|
|
rf_workflow <- wf$workflow() %>%
|
2023-02-02 13:23:28 -05:00
|
|
|
wf$add_model(rf__base_model) %>%
|
2023-01-31 09:02:19 -05:00
|
|
|
wf$add_recipe(rf_recipe)
|
|
|
|
|
2023-02-02 13:23:28 -05:00
|
|
|
rf_base_fit <- p$fit(rf_workflow, class_train)
|
2023-01-31 15:29:27 -05:00
|
|
|
|
2023-02-01 11:00:57 -05:00
|
|
|
rf_predict <- class_train %>%
|
|
|
|
dplyr::select(ft4_dia) %>%
|
|
|
|
dplyr::bind_cols(
|
2023-02-02 13:23:28 -05:00
|
|
|
predict(rf_base_fit, class_train)
|
|
|
|
,predict(rf_base_fit, class_train, type = "prob")
|
2023-02-01 11:00:57 -05:00
|
|
|
)
|
2023-01-31 16:04:06 -05:00
|
|
|
|
2023-02-01 11:00:57 -05:00
|
|
|
conf_mat_rf <- ys$conf_mat(rf_predict, ft4_dia, .pred_class)
|
2023-01-31 16:04:06 -05:00
|
|
|
|
|
|
|
|
2023-01-31 19:33:24 -05:00
|
|
|
|
2023-02-02 13:23:28 -05:00
|
|
|
rf_pred <- dplyr::select(class_train, -ft4_dia, -subject_id, -charttime)
|
|
|
|
|
|
|
|
rf_tuning_model <- p$rand_forest(trees = tune(), mtry = tune(), min_n = tune()) %>%
|
|
|
|
p$set_engine("ranger") %>% p$set_mode("classification")
|
|
|
|
|
|
|
|
rf_param <- p$extract_parameter_set_dials(rf_tuning_model)
|
|
|
|
|
|
|
|
rf_param <- rf_param %>% update(mtry = d$finalize(d$mtry(), rf_pred))
|
|
|
|
|
|
|
|
data_fold <- rsamp$vfold_cv(class_train, v = 5)
|
|
|
|
|
|
|
|
rf_workflow <- wf$update_model(rf_workflow, rf_tuning_model)
|
|
|
|
|
2023-02-02 20:50:30 -05:00
|
|
|
# takes around 1 hr to run grid search. saving best params manaually
|
|
|
|
# rf_tune <- rf_workflow %>%
|
|
|
|
# tune::tune_grid(
|
|
|
|
# data_fold
|
|
|
|
# ,grid = rf_param %>% d$grid_regular()
|
|
|
|
# )
|
|
|
|
|
|
|
|
rf_best_params <- tibble::tibble(
|
|
|
|
mtry = 8
|
|
|
|
,trees = 2000
|
|
|
|
,min_n = 2
|
|
|
|
)
|
|
|
|
|
|
|
|
final_rf_workflow <- rf_workflow %>%
|
|
|
|
tune::finalize_workflow(rf_best_params)
|
|
|
|
|
|
|
|
final_rf_fit <- p$fit(final_rf_workflow, class_train)
|
|
|
|
|
|
|
|
final_rf_predict <- class_train %>%
|
|
|
|
dplyr::select(ft4_dia) %>%
|
|
|
|
dplyr::bind_cols(
|
|
|
|
predict(final_rf_fit, class_train)
|
|
|
|
,predict(final_rf_fit, class_train, type = "prob")
|
2023-02-02 13:23:28 -05:00
|
|
|
)
|
|
|
|
|
2023-02-02 20:50:30 -05:00
|
|
|
final_conf_rf <- ys$conf_mat(final_rf_predict, ft4_dia, .pred_class)
|
2023-02-03 14:37:02 -05:00
|
|
|
|
|
|
|
|
|
|
|
# random forest regression ------------------------------------------------
|
|
|
|
|
|
|
|
reg_metrics <- ys$metric_set(ys$rmse, ys$rsq, ys$mae)
|
|
|
|
|
|
|
|
rf_base_reg_model <- p$rand_forest() %>%
|
|
|
|
p$set_engine("ranger") %>% p$set_mode("regression")
|
|
|
|
|
|
|
|
rf_reg_recipe <- r$recipe(FT4 ~ . , data = reg_train) %>%
|
|
|
|
r$update_role(subject_id, new_role = "id") %>%
|
|
|
|
r$update_role(charttime, new_role = "time") %>%
|
|
|
|
r$step_impute_bag(r$all_predictors())
|
|
|
|
|
|
|
|
|
|
|
|
rf_reg_workflow <- wf$workflow() %>%
|
|
|
|
wf$add_model(rf_base_reg_model) %>%
|
|
|
|
wf$add_recipe(rf_reg_recipe)
|
|
|
|
|
|
|
|
rf_base_reg_fit <- p$fit(rf_reg_workflow, reg_train)
|
|
|
|
|
|
|
|
rf_reg_predict <- reg_train %>%
|
|
|
|
dplyr::select(FT4) %>%
|
|
|
|
dplyr::bind_cols(
|
|
|
|
predict(rf_base_reg_fit, reg_train)
|
|
|
|
)
|